Problem HAPPYNUMBER: Happy Numbers

I like numbers. Thus I am always looking for new theorems about numbers. Last time I found an interesting article in MathWorld about Happy Numbers.
Those numbers are based on the simple function $f . f(n)$ is the sum of the squares of the digits of n. For example $f(123)=1^{2}+2^{2}+3^{2}=14$. A number is called happy, if the repeated application of f leads to the result 1 .
Hint: Numbers, which are not happy, lead to a periodical cycle of length 8.

Input

Each testcase contains one single integer $n(1<n<2147483647)$. Input is ended by a single 0 .

Output

Output 'This number is a happy number:' if the number can be called happy according to the definition above. In the case you found more than this happy number by iterative application of f, print these numbers from the last to the first one in parentheses.
If the number cannot be called happy, just print 'We feel sorry for this number:'.

Sample Input 1

19
58
100
0

Sample Output 1

```
This number is a happy number: 19 (100 68 82)
We feel sorry for this number: 58
This number is a happy number: 100
```

