Problem NOTSUBSEQ: Not a subsequence

In this problem we consider strings over a fixed finite alphabet of size k. The alphabet contains the first k characters from the list

$$
a, b, c, \ldots, z, A, B, C, \ldots, Z, 0,1, \ldots, 9
$$

For every test case, we are given the value of k (notice that it cannot exceed 62), and consider only strings consisting of the first k characters from the list.
Given a string $s[1 . . n]$, we are interested in strings which are not its subsequences. Formally, a string $t[1 . . m]$ is a subsequence of a string $s[1 . . n]$ when one can choose not necessarily contiguous indices $1 \leq i_{1}<i_{2}<\ldots i_{m} \leq n$ such that $t[1]=s\left[i_{1}\right], t[2]=s\left[i_{2}\right], \ldots, t[m]=t\left[i_{m}\right]$. For example, acb is a subsequence of babcaab. Now, given a string $s[1 . . n]$, we would like to compute the smallest m such that there is a string $t[1 . . m]$, which is not a subsequence of $s[1 . . n]$. Additionally, we would like to count the number of such shortest strings $t[1 . . m]$. As the latter number can be quite large, output it modulo $10^{9}+7$.

Input

The input starts with the number of test cases $T \leq 100$. Then the descriptions of T test cases follow. A single test case consists of a single line containing the size of the alphabet $k(k \in[1,62])$ and the string $s[1 . . n]\left(n \in\left[1,10^{6}\right]\right)$. The string consists of the first k characters from $a-z A-Z 0-9$.

Output

For every test case output one line containing two numbers. The first number is the smallest m such that there is a string $t[1 . . m]$ consisting of the first k characters from $a-z A-Z 0-9$, which is not a subsequence of $s[1 . . n]$. The second number is the total count of such shortest strings $t[1 . . m]$ modulo $10^{9}+7$.

Sample Input 1

Sample Output 1

3 3 5
2 abba 152
$620123456789 \quad 47$
3 aabbcbbcbabcbab

