Problem DERIVATIVES: Derivatives

Jeff recently joined an algebra working group that investigates algebraic rings of integers modulo N. An integer in this group is characterized by its remainder, which is left over after division by N.
Jeff has a special problem, where he needs to evaluate the derivatives of polynomials at the value 0 in the previously described ring. Derivatives are defined in the standard way, i.e., the first derivative of the term x^{n} is $n \cdot x^{n-1}$, the second derivative is $n(n-1) \cdot x^{n-2}$ and so on. A special property of the algebraic structure leads to the fact that the exponents of the terms are relatively large with respect to N. Each exponent is a non-negative integer greater or equal to $N-1000$.
Jeff is not very good in programming and therefore he asks you to write a program to automatize his calculations. Please determine all non zero values of the derivatives of his polynomial for the input value 0 .

Input

The first line contains two integers N and M where N determines the size of the ring $\left(1 \leq N \leq 2 \cdot 10^{9}\right)$ and M represents the number of terms of Jeff's polynomial $(1 \leq M \leq 1000)$. The following M lines contain two integers m_{i} and $n_{i}\left(0<m_{i}<N, \max (0, N-1000) \leq n_{i} \leq 2 \cdot 10^{9}\right)$. Each pair m_{i} and n_{i} describes a term of Jeff's polynomial. The i-th term is defined by $m_{i} \cdot x^{n_{i}}$. The exponents n_{i} are given in strictly increasing order.

Output

Print several lines of output. The first line should contain an integer K, the number of non zero values if the derivatives of Jeff's polynomial are evaluated at 0 . Each of the following K lines should contain two integers d_{i} and $f_{i}\left(0<f_{i}<\right.$ $N)$. Each pair d_{i} and f_{i} should represent a non zero value of the derivative of Jeff's polynomial, i.e., the value of the d_{i}-th derivative evaluated with zero is f_{i}. The values d_{i} should be printed in strictly increasing order.

Explanation of the first sample case

Jeff's polynomial is $f(x)=7 \cdot x^{0}+5 \cdot x^{3}$.
The 0 -th derivative is equal to f and $f(0)=7$. The first derivative $\left(15 \cdot x^{2}\right)$ and the second derivative $\left(30 \cdot x^{1}\right)$ evaluate to 0 . The third derivative is equal to $30 \cdot x^{0}$ and its evaluation at 0 yields $30 \equiv 8 \bmod 11$. The 4 -th and all further derivatives are equal to zero and are therefore always evaluated to 0 .

Sample Input 1

112
70
53

Sample Output 1

2
07
38

Sample Input 2

Sample Output 2

19999999734
31999999960
21999999965
11999999970
51999999975

3
19999999601272169057
19999999651367460299
1999999970999999986

