Problem AVENUE: Avenue

The trees in the avenue to a noble villa suffer from uncrolled growth and do not look manorial any more. Therefore, the owner instructs the gardener to prettify the avenue again. The gardener - as he is a smart and clever guy - wants to work as little as possible. He decides to chop down the trees that do not correspond to a pattern: Every tree has to be strictly higher than its direct predecessor. In such way, the trees form a nice shape and everybody is happy again. Note that the gardener does not reduce the height of a tree but completely removes it from the avenue.

Input

The first line of the input describes the number of testcases, denoted by $n(1 \leq n \leq 10)$. The next n lines describe a single testcase. The first number on each of these lines is the number of trees in the avenue, denoted by $m(1 \leq m \leq 10,000)$. Then there follow m numbers, denoting the tree heights. You may safely assume that each height is a positive integer not greater than 100,000 .

Output

The gardener wants to chop a minimal number of trees in order to form the pattern - which trees have to be chopped? Print the according trees sorted in one line per testcase (first tree of input is named 1 , second $2 \ldots$). If there is more than one possibility, the gardener prefers to chop trees near to the villa (later in the input). If the trees already match to the pattern, print ' none'.

Sample Input 1

```
6
10
10
7llllllll
5 4711 4711 4711 4711 4711
\(\begin{array}{llllllll}7 & 1 & 2 & 3 & 4 & 3 & 5 & 6\end{array} \quad \begin{array}{lllll}1 & 2 & 5 & 6 & 7\end{array}\)
\(\begin{array}{llllllll}7 & 6 & 5 & 3 & 4 & 3 & 2 & 1\end{array} \quad \begin{array}{llll}2 & 3 & 4 & 5\end{array}\)

\section*{Sample Output 1}
\(\begin{array}{lllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\) none
4
5
\(\begin{array}{lllll}1 & 2 & 5 & 6\end{array}\)
2345```

